Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 702: 149635, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335702

RESUMO

Dietary vitamin K1 (phylloquinone: PK) and menaquinone (MK-n) are converted to menadione (MD) in the small intestine and then translocated to various tissues where they are converted to vitamin K2 (menaquinone-4: MK-4) by UbiA prenyltransferase domain containing protein 1 (UBIAD1). MK-4 is effective in bone formation and is used to treat osteoporosis in Japan. UBIAD1 is expressed in bone and osteoblasts and shows conversion to MK-4, but the role of UBIAD1 in osteogenesis is unknown. In this study, we investigated the function of UBIAD1 in osteogenesis using a tamoxifen-dependent UBIAD1-deficient mouse model. When UBIAD1 deficiency was induced from the first week of life, the femur was significantly shortened, and bone mineral density (BMD) was reduced. In addition, the expression of bone and chondrocyte matrix proteins and chondrocyte differentiation factors was significantly decreased. In primary cultured chondrocytes, chondrocyte differentiation was significantly reduced by UBIAD1 deficiency. These results suggest that UBIAD1 is an important factor for the regulation of chondrocyte proliferation and differentiation during osteogenesis.


Assuntos
Dimetilaliltranstransferase , Vitamina K , Animais , Camundongos , Vitamina K/metabolismo , Osteogênese , Condrogênese , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Vitamina K 1/farmacologia
2.
Neurochem Res ; 47(9): 2839-2855, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35907114

RESUMO

Astrocytes, together with microglia, play important roles in the non-infectious inflammation and scar formation at the brain infarct during ischemic stroke. After ischemia occurs, these become highly reactive, accumulate at the infarction, and release various inflammatory signaling molecules. The regulation of astrocyte reactivity and function surrounding the infarction largely depends on intercellular communication with microglia. However, the mechanisms involved remain unclear. Furthermore, recent molecular biological studies have revealed that astrocytes are highly divergent under both resting and reactive states, whereas it has not been well reported how the communication between microglia and astrocytes affects astrocyte divergency during ischemic stroke. Minocycline, an antibiotic that reduces microglial activity, has been used to examine the functional roles of microglia in mice. In this study, we used a mouse photothrombotic ischemic stroke model to examine the characteristics of astrocytes after the administration of minocycline during ischemic stroke. Minocycline increased astrocyte reactivity and affected the localization of astrocytes in the penumbra region. Molecular characterization revealed that the induced expression of mRNA encoding the fatty acid binding protein 7 (FABP7) by photothrombosis was enhanced by the minocycline administration. Meanwhile, minocycline did not significantly affect the phenotype or class of astrocytes. The expression of Fabp7 mRNA was well correlated with that of tumor-necrosis factor α (TNFα)-encoding Tnf mRNA, indicating that a correlated expression of FABP7 from astrocytes and TNFα is suppressed by microglial activity.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Infarto Encefálico/metabolismo , Modelos Animais de Doenças , Camundongos , Microglia/metabolismo , Minociclina/metabolismo , Minociclina/farmacologia , Minociclina/uso terapêutico , RNA Mensageiro/metabolismo , Acidente Vascular Cerebral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
J Nutr Sci Vitaminol (Tokyo) ; 68(3): 172-180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35768248

RESUMO

Avoidance of sunlight and self-restraint due to the COVID-19 pandemic may contribute to reduced vitamin D status. This study provides comparable data on vitamin D status in Japanese young women and assesses the effect of lifestyle, including changes caused by the COVID-19 pandemic, on vitamin D status. In study 1, 39 young healthy Japanese women aged 21-25 y were recruited from May 2016-June 2017. Serum 25-hydroxyvitamin D (25OHD) concentration and diet and lifestyle information were obtained from participants each month (n=124). In study 2, using the same parameters as study 1, young women aged 21-23 y (n=10) were recruited in September 2020. In the results of study 1, we found the frequencies of vitamin D deficiency (25OHD<20 ng/mL) in spring, summer, fall, and winter were 90.5%, 62.5%, 81.5%, and 91.3%, respectively. The substantial difference of serum 25OHD concentration was obtained in spring (Δ3.6 ng/mL) and summer (Δ5.1 ng/mL) depending on the frequency of sunscreen use (0-2 d/wk, 3-7 d/wk). In study 2, serum 25OHD concentration in September 2020 was extremely lower than in September 2016 (13.2 ng/mL vs. 21.7 ng/mL). The number of days spent outside in 2020 decreased drastically compared with 2019. In conclusion, vitamin D deficiency was highly common in Japanese women in their early 20s, and frequent sunscreen use contributed to low vitamin D status. Moreover, because the decrease in days outside due to the COVID-19 pandemic obviously resulted in a decline in vitamin D status, both appropriate sunbathing and increased dietary vitamin D intake are recommended to young women.


Assuntos
COVID-19 , Deficiência de Vitamina D , COVID-19/epidemiologia , Feminino , Humanos , Japão/epidemiologia , Estilo de Vida , Pandemias , Estações do Ano , Protetores Solares , Vitamina D , Deficiência de Vitamina D/epidemiologia , Vitaminas
4.
Yakugaku Zasshi ; 141(5): 669-674, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33952750

RESUMO

Vitamin K is a fat-soluble vitamin that plays an important role in blood coagulation and bone formation. Vitamin K has homologues due to differences in the side chain structure, phylloquinone (abbreviated as vitamin K1, PK) having a phytyl side chain and menaquinones (MK-n, n=1 to 14) having an isoprenoid side chain structure. The main vitamin K that we take from our daily diet is PK, and a fermented food, natto, contains MK-7 produced by Bacillus subtilis natto. However, the majority of vitamin K present in the tissues of mammals, including humans, is menaquinone-4 (abbreviated as vitamin K2, MK-4) having a geranylgeranyl side chain. This reason is that PK or MK-n obtained in the diet is converted into MK-4 in the body. We identified that the UbiA prenyltransferase domain containing protein 1 (UBIAD1) is the conversion enzyme of PK and MK-n to MK-4. The physiological roles of MK-4 in all tissues of the whole body and the physiological significance of MK-4 converted from PK and MK-n by UBIAD1 have not been sufficiently elucidated yet. To investigate the function of UBIAD1 in vivo, we generated UBIAD1 systemic knockout mice and tissue-specific UBIAD1 knockout mice. In this paper, we introduce the usefulness of vitamin K for diseases that may involve vitamin K and UBIAD1.


Assuntos
Deficiência de Vitamina K/complicações , Vitamina K/fisiologia , Animais , Coagulação Sanguínea , Dimetilaliltranstransferase/fisiologia , Humanos , Camundongos Knockout , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/prevenção & controle , Osteogênese , Vitamina K/química , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo
5.
J Biol Chem ; 296: 100668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865853

RESUMO

CYP24A1-deficient (Cyp24a1 KO) rats were generated using the CRISPER/Cas9 system to investigate CYP24A1-dependent or -independent metabolism of 25(OH)D3, the prohormone of calcitriol. Plasma 25(OH)D3 concentrations in Cyp24a1 KO rats were approximately twofold higher than in wild-type rats. Wild-type rats showed five metabolites of 25(OH)D3 in plasma following oral administration of 25(OH)D3, and these metabolites were not detected in Cyp24a1 KO rats. Among these metabolites, 25(OH)D3-26,23-lactone was identified as the second major metabolite with a significantly higher Tmax value than others. When 23S,25(OH)2D3 was administered to Cyp24a1 KO rats, neither 23,25,26(OH)3D3 nor 25(OH)D3-26,23-lactone was observed. However, when 23S,25R,26(OH)3D3 was administered to Cyp24a1 KO rats, plasma 25(OH)D3-26,23-lactone was detected. These results suggested that CYP24A1 is responsible for the conversion of 25(OH)D3 to 23,25,26(OH)3D3 via 23,25(OH)2D3, but enzyme(s) other than CYP24A1 may be involved in the conversion of 23,25,26(OH)3D3 to 25(OH)D3-26,23-lactone. Enzymatic studies using recombinant human CYP species and the inhibitory effects of ketoconazole suggested that CYP3A plays an essential role in the conversion of 23,25,26(OH)3D3 into 25(OH)D3-26,23-lactone in both rats and humans. Taken together, our data indicate that Cyp24a1 KO rats are valuable for metabolic studies of vitamin D and its analogs. In addition, long-term administration of 25(OH)D3 to Cyp24a1 KO rats at 110 µg/kg body weight/day resulted in significant weight loss and ectopic calcification. Thus, Cyp24a1 KO rats could represent an important model for studying renal diseases originating from CYP24A1 dysfunction.


Assuntos
Sistemas CRISPR-Cas , Calcifediol/metabolismo , Citocromo P-450 CYP3A/metabolismo , Metaboloma/efeitos dos fármacos , Vitamina D3 24-Hidroxilase/antagonistas & inibidores , Vitaminas/metabolismo , Animais , Animais Geneticamente Modificados , Calcifediol/administração & dosagem , Ratos , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Vitaminas/administração & dosagem
6.
Neurosci Lett ; 739: 135406, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32987131

RESUMO

A strong therapeutic target of ischemic stroke is controlling brain inflammation. Recent studies have implicated the critical role of C-C chemokine receptor 5 (CCR5) in neuroinflammation during ischemic stroke. It has been reported that the expression of the matrix metalloproteinases, MMP-3, MMP-12, and MMP-13, is controlled by CCR5; however, their expressional regulation in the infarct brain has not been clearly understood. This study investigated the mRNA expression of Mmp-3, -12, and -13 in the ischemic cerebral cortex of photothrombosis mouse model. The three Mmps were highly upregulated in the early stages of ischemic stroke and were expressed in different types of cells. Mmp-3 and Mmp-13 were expressed in blood vessel endothelial cells after ischemia-induction, whereas Mmp-12 was expressed in activated microglia. The expression of Mmp-13 in resting microglia and in neurons of uninjured cerebral cortex was lost in the infarct region. Therefore, the MMPs responding to CCR5 are differentially regulated during ischemic stroke.


Assuntos
Infarto Cerebral/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , RNA Mensageiro , Regulação para Cima
7.
Sci Rep ; 10(1): 5677, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231239

RESUMO

Recent studies have suggested that vitamin D activities involve vitamin D receptor (VDR)-dependent and VDR-independent effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 25-hydroxyvitamin D3 (25(OH)D3) and ligand-independent effects of the VDR. Here, we describe a novel in vivo system using genetically modified rats deficient in the Cyp27b1 or Vdr genes. Type II rickets model rats with a mutant Vdr (R270L), which recognizes 1,25(OH)2D3 with an affinity equivalent to that for 25(OH)D3, were also generated. Although Cyp27b1-knockout (KO), Vdr-KO, and Vdr (R270L) rats each showed rickets symptoms, including abnormal bone formation, they were significantly different from each other. Administration of 25(OH)D3 reversed rickets symptoms in Cyp27b1-KO and Vdr (R270L) rats. Interestingly, 1,25(OH)2D3 was synthesized in Cyp27b1-KO rats, probably by Cyp27a1. In contrast, the effects of 25(OH)D3 on Vdr (R270L) rats strongly suggested a direct action of 25(OH)D3 via VDR-genomic pathways. These results convincingly suggest the usefulness of our in vivo system.


Assuntos
Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Calcifediol/genética , Calcifediol/metabolismo , Calcitriol/farmacologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Raquitismo/metabolismo , Vitamina D/análogos & derivados , Vitamina D/genética , Vitamina D3 24-Hidroxilase/genética
8.
Biol Pharm Bull ; 43(4): 649-662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238706

RESUMO

Multiple external and internal factors have been reported to induce thymic involution. Involution involves dramatic reduction in size and function of the thymus, leading to various immunodeficiency-related disorders. Therefore, clarifying and manipulating molecular mechanisms governing thymic involution are clinically important, although only a few studies have dealt with this issue. In the present study, we investigated the molecular mechanisms underlying thymic involution using a murine acute diet-restriction model. Gene expression analyses indicated that the expression of T helper 1 (Th1)-producing cytokines, namely interferon-γ and interleukin (IL)-2, was down-regulated, while that of Th2-producing IL-5, IL-6, IL-10 and IL-13 was up-regulated, suggesting that acute diet-restriction regulates the polarization of naïve T cells to a Th2-like phenotype during thymic involution. mRNAs for prostanoid biosynthetic enzymes were up-regulated by acute diet-restriction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses detected the increased production of prostanoids, particularly prostaglandin D2 and thromboxane B2, a metabolite of thromboxane A2, in the diet-restricted thymus. Administration of non-steroidal anti-inflammatory drugs, namely aspirin and etodolac, to inhibit prostanoid synthesis suppressed the biased expression of Th1- and Th2-cytokines as well as molecular markers of Th1 and Th2 cells in the diet-restricted thymus, without affecting the reduction of thymus size. In vitro stimulation of thymocytes with phorbol myristate acetate (PMA)/ionomycin confirmed the polarization of thymocytes from diet-restricted mice toward Th2 cells. These results indicated that the induced production of prostanoids during diet-restriction-induced thymic involution is involved in the polarization of naïve T cells in the thymus.


Assuntos
Restrição Calórica , Citocinas/imunologia , Prostaglandinas/imunologia , Células Th1/imunologia , Células Th2/imunologia , Timo/imunologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Citocinas/genética , Dieta , Etodolac/farmacologia , Masculino , Camundongos Endogâmicos ICR , Tamanho do Órgão/efeitos dos fármacos , Timo/anatomia & histologia , Timo/efeitos dos fármacos
9.
Int J Mol Sci ; 20(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013667

RESUMO

UbiA prenyltransferase domain-containing protein 1 (UBIAD1) is a vitamin K2 biosynthetic enzyme. We previously showed the lethality of this enzyme in UBIAD1 knockout mice during the embryonic stage. However, the biological effects of UBIAD1 deficiency after birth remain unclear. In the present study, we used a tamoxifen-inducible systemic UBIAD1 knockout mouse model to determine the role of UBIAD1 in adult mice. UBIAD1 knockout resulted in the death of the mice within about 60 days of administration of tamoxifen. The pancreas presented with the most prominent abnormality in the tamoxifen-induced UBIAD1 knockout mice. The pancreas was reduced remarkably in size; furthermore, the pancreatic acinar cells disappeared and were replaced by vacuoles. Further analysis revealed that the vacuoles were adipocytes. UBIAD1 deficiency in the pancreatic acinar cells caused an increase in oxidative stress and autophagy, leading to apoptotic cell death in the tamoxifen-induced UBIAD 1 knockout mice. These results indicate that UBIAD1 is essential for maintaining the survival of pancreatic acinar cells in the pancreas.


Assuntos
Células Acinares/metabolismo , Dimetilaliltranstransferase/genética , Pâncreas/citologia , Pâncreas/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Atrofia , Autofagia/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/genética , Dimetilaliltranstransferase/metabolismo , Feminino , Genes Letais , Genótipo , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/patologia , Fenótipo , Tamoxifeno/farmacologia
10.
J Steroid Biochem Mol Biol ; 185: 71-79, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031146

RESUMO

We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 µg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Conservadores da Densidade Óssea/farmacologia , Calcifediol/farmacologia , Calcitriol/biossíntese , Calcitriol/sangue , Raquitismo/tratamento farmacológico , Animais , Densidade Óssea/efeitos dos fármacos , Calcitriol/genética , Cálcio/sangue , Colestanotriol 26-Mono-Oxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoporose/tratamento farmacológico , Hormônio Paratireóideo/sangue , Fósforo/sangue , Vitamina D3 24-Hidroxilase/biossíntese , Vitamina D3 24-Hidroxilase/genética
11.
PLoS One ; 13(10): e0199856, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281599

RESUMO

Calcium (Ca) absorption from the intestinal tract is promoted by active vitamin D (1α,25D3). Vitamin D not only promotes Ca homeostasis, but it also inhibits bone resorption and promotes osteogenesis, thus playing a role in the maintenance of normal bone metabolism. Because 1α,25D3 plays an important role in osteogenesis, vitamin D formulations, such as alfacalcidol (ALF) and eldecalcitol (ELD), are used for treating osteoporosis. While it is known that, in contrast to ALF, ELD is an active ligand that directly acts on bone, the reason for its superior osteogenesis effects is unknown. Cyp27b1-knockout mice (Cyp27b1-/-mice) are congenitally deficient in 1α,25D3 and exhibit marked hypocalcemia and high parathyroid hormone levels, resulting in osteodystrophy involving bone hypocalcification and growth plate cartilage hypertrophy. However, because the vitamin D receptor is expressed normally in Cyp27b1-/-mice, they respond normally to 1α,25D3. Accordingly, in Cyp27b1-/-mice, the pharmacological effects of exogenously administered active vitamin D derivatives can be analyzed without being affected by 1α,25D3. We used Cyp27b1-/-mice to characterize and clarify the superior osteogenic effects of ELD on the bone in comparison with ALF. The results indicated that compared to ALF, ELD strongly induces ECaC2, calbindin-D9k, and CYP24A1 in the duodenum, promoting Ca absorption and decreasing the plasma concentration of 1α,25D3, resulting in improved osteogenesis. Because bone morphological measurements demonstrated that ELD has stronger effects on bone calcification, trabecular formation, and cancellous bone density than ALF, ELD appears to be a more effective therapeutic agent for treating postmenopausal osteoporosis, in which cancellous bone density decreases markedly. By using Cyp27b1-/-mice, this study was the first to succeed in clarifying the osteogenic effect of ELD without any influence of endogenous 1α,25D3. Furthermore, ELD more strongly enhanced bone mineralization, trabecular proliferation, and cancellous bone density than did ALF. Thus, ELD is expected to show an effect on postmenopausal osteoporosis, in which cancellous bone mineral density decreases markedly. In the future, this study may enable the development of next-generation active vitamin D derivatives with higher affinity for bone than ELD.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Hidroxicolecalciferóis/farmacologia , Osteogênese/efeitos dos fármacos , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Animais , Peso Corporal , Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Fêmur/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteoporose Pós-Menopausa/tratamento farmacológico , Receptores de Calcitriol , Tíbia/diagnóstico por imagem , Transfecção , Vitamina D/metabolismo , Vitamina D/farmacologia
12.
Neuroreport ; 29(3): 174-180, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215465

RESUMO

Middle cerebral artery occlusion (MCAO) is the most widely used animal model of ischemic stroke. This model well recapitulates the pathological features of most human cases; however, MCAO is technically difficult to achieve in mice and has some disadvantages for investigating the molecular mechanisms of pathological progression in stroke. The recently developed photothrombosis model may be more suitable for research on the molecular mechanisms of ischemic stroke in mice. Yet, similarities and differences between the photothrombosis and MCAO models are not well characterized. In the present study, we examined the expression of tissue inhibitor of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) in the brains of photothrombosis model mice. Our results indicated that the gene expression of TIMP-1 was upregulated in endothelial cells in the pathological area surrounding the infarction, similar to the MCAO model. Yet, pathologically induced changes in TIMP-1 were not affected by treatment with aspirin or etodolac. Whereas MMP-2 and MMP-8 mRNA were upregulated after infarction in both models, MMP-9 expression, which is induced in the infarct area in the MCAO model, was unchanged in the photothrombosis model. These findings suggest that the expression patterns of TIMP-1 and MMP-9 are regulated independently in photothrombosis model mice.


Assuntos
Encéfalo/metabolismo , Isquemia/metabolismo , Metaloproteinases da Matriz/metabolismo , Acidente Vascular Cerebral/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Etodolac/farmacologia , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Isquemia/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos
13.
Anal Sci ; 33(7): 863-867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690267

RESUMO

This study aimed to develop a menadione (MD) determination method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a pseudo multiple reaction monitoring (MRM) technique, wherein two quadrupoles are used to monitor the same ion. Detection limits of 40 and 2 pg were obtained for MD and its deuterium-labeled form, respectively, whereas MD intra- and inter-assay coefficient of variation values were determined as 5.4 - 8.2%, with the corresponding recoveries equaling 90.5 - 109.6%. The developed method enables determination of MD in urine, plasma, cell extract, and culture media, demonstrating that pseudo multiple reaction monitoring can achieve quantification of compounds forming no suitable product ions, such as MD.


Assuntos
Vitamina K 3/análise , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Humanos , Estrutura Molecular , Suínos , Espectrometria de Massas em Tandem
14.
Biochem Biophys Res Commun ; 483(1): 359-365, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28025137

RESUMO

The active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25D3), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR). It is formed by the hydroxylation of vitamin D at the 1α position by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) in the kidney. However, Cyp27b1-/- mice, deficient in CYP27B1, and VDR-deficient mice (Vdr-/-) have not been extensively examined, particularly in a comparative framework. To clarify the physiological significance of 1α,25D3 and VDR, we produced Cyp27b1-/- mice and compared their phenotypes with those of Vdr-/- mice. Cyp27b1-/- mice exhibited hypocalcemia, growth defects, and skeletogenesis dysfunction, similar to Vdr-/- mice. However, unlike Cyp27b1-/- mice, Vdr-/- mice developed alopecia. Cyp27b1-/- mice exhibited cartilage mass formation and had difficulty walking on hindlimbs. Furthermore, a phenotypic analysis was performed on Cyp27b1-/- mice provided a high Ca diet to correct for the Ca metabolic abnormality. In addition, the effects of 1α,25D3 that are not mediated by Ca metabolic regulatory activity were investigated. Even when the blood Ca concentration was corrected, abnormalities in growth and cartilage tissue formation did not improve in Cyp27b1-/- mice. These results suggested that 1α,25D3 directly controls chondrocyte proliferation and differentiation. Using Cyp27b1-/- mice produced in this study, we can analyze the physiological effects of novel vitamin D derivatives in the absence of endogenous 1α,25D3. Accordingly, this study provides a useful animal model for the development of novel vitamin D formulations that are effective for the treatment and prevention of osteoporosis.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Calcitriol/análogos & derivados , Cartilagem/efeitos dos fármacos , Receptores de Calcitriol/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Alopecia/genética , Animais , Peso Corporal , Calcitriol/metabolismo , Cálcio/sangue , Cálcio/metabolismo , Cartilagem/metabolismo , Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Feminino , Fêmur/metabolismo , Masculino , Camundongos , Camundongos Knockout , Osteogênese , Osteoporose/metabolismo , Hormônio Paratireóideo/metabolismo , Fenótipo , Fósforo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/metabolismo
15.
J Med Chem ; 58(17): 7088-92, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26305288

RESUMO

We synthesized new vitamin K2 analogues with ω-terminal modifications of the side chain and evaluated their selective differentiation of neuronal progenitor cells into neurons in vitro. The result of the assay showed that the menaquinone-3 analogue modified with the m-methylphenyl group had the most potent activity, which was twice as great as the control. This finding indicated that it is possible to obtain much more potent compounds with modification of the structure of vitamin K2.


Assuntos
Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Animais , Diferenciação Celular , Camundongos , Células-Tronco Multipotentes/citologia , Neocórtex/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Estereoisomerismo , Relação Estrutura-Atividade , Vitamina K 2/farmacologia
16.
PLoS One ; 10(4): e0125737, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874989

RESUMO

UbiA prenyltransferase domain-containing protein 1 (UBIAD1) plays a significant role in vitamin K2 (MK-4) synthesis. We investigated the enzymological properties of UBIAD1 using microsomal fractions from Sf9 cells expressing UBIAD1 by analysing MK-4 biosynthetic activity. With regard to UBIAD1 enzyme reaction conditions, highest MK-4 synthetic activity was demonstrated under basic conditions at a pH between 8.5 and 9.0, with a DTT ≥0.1 mM. In addition, we found that geranyl pyrophosphate and farnesyl pyrophosphate were also recognized as a side-chain source and served as a substrate for prenylation. Furthermore, lipophilic statins were found to directly inhibit the enzymatic activity of UBIAD1. We analysed the aminoacid sequences homologies across the menA and UbiA families to identify conserved structural features of UBIAD1 proteins and focused on four highly conserved domains. We prepared protein mutants deficient in the four conserved domains to evaluate enzyme activity. Because no enzyme activity was detected in the mutants deficient in the UBIAD1 conserved domains, these four domains were considered to play an essential role in enzymatic activity. We also measured enzyme activities using point mutants of the highly conserved aminoacids in these domains to elucidate their respective functions. We found that the conserved domain I is a substrate recognition site that undergoes a structural change after substrate binding. The conserved domain II is a redox domain site containing a CxxC motif. The conserved domain III is a hinge region important as a catalytic site for the UBIAD1 enzyme. The conserved domain IV is a binding site for Mg2+/isoprenyl side-chain. In this study, we provide a molecular mapping of the enzymological properties of UBIAD1.


Assuntos
Dimetilaliltranstransferase/metabolismo , Vitamina K 2/metabolismo , Sequência de Aminoácidos , Animais , Vias Biossintéticas , Linhagem Celular , Colesterol/metabolismo , Dimetilaliltranstransferase/análise , Dimetilaliltranstransferase/genética , Expressão Gênica , Humanos , Insetos , Ácido Mevalônico/metabolismo , Microssomos/enzimologia , Microssomos/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Prenilação de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
Biochem Biophys Res Commun ; 460(2): 238-44, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25772619

RESUMO

Vitamin K is involved in bone formation and blood coagulation. Natural vitamin K compounds are composed of the plant form phylloquinone (vitamin K1) and a series of bacterial menaquionones (MK-n; vitamin K2). Menadione (vitamin K3) is an artificial vitamin K compound. MK-4 contains 4-isoprenyl as a side group in the 2-methyl-1,4-naphthoquinone common structure and has various bioactivities. UbiA prenyltransferase domain containing 1 (UBIAD1 or TERE1) is the menaquinone-4 biosynthetic enzyme. UBIAD1 transcript expression significantly decreases in patients with prostate carcinoma and overexpressing UBIAD1 inhibits proliferation of a tumour cell line. UBIAD1 mRNA expression is ubiquitous in mouse tissues, and higher UBIAD1 mRNA expression levels are detected in the brain, heart, kidneys and pancreas. Several functions of UBIAD1 have been reported; however, regulation of the human UBIAD1 gene has not been elucidated. Here we report cloning and characterisation of the human UBIAD1 promoter. A 5' rapid amplification of cDNA ends analysis revealed that the main transcriptional start site was 306 nucleotides upstream of the translation initiation codon. Deletion and mutation analyses revealed the functional importance of the YY1 consensus motif. Electrophoretic gel mobility shift and chromatin immunoprecipitation assays demonstrated that YY1 binds the UBIAD1 promoter in vitro and in vivo. In addition, YY1 small interfering RNA decreased endogenous UBIAD1 mRNA expression and UBIAD1 conversion activity. These results suggest that YY1 up-regulates UBIAD1 expression and UBIAD1 conversion activity through the UBIAD1 promoter.


Assuntos
Dimetilaliltranstransferase/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator de Transcrição YY1/fisiologia , Sequência de Bases , Western Blotting , Imunoprecipitação da Cromatina , DNA Complementar , Dimetilaliltranstransferase/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica
18.
PLoS One ; 9(8): e104078, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127365

RESUMO

UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.


Assuntos
Dimetilaliltranstransferase/fisiologia , Desenvolvimento Embrionário/genética , Vitamina K 2/metabolismo , Animais , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Técnicas de Cultura Embrionária , Feminino , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacologia
19.
PLoS One ; 9(2): e88643, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520408

RESUMO

Vitamin K is a fat-soluble vitamin that plays important roles in blood coagulation and bone metabolism. One of its functions is as a co-factor for γ-glutamyl carboxylase (Ggcx). Conventional knockout of Ggcx causes death shortly after birth in homozygous mice. We created Ggcx-floxed mice by inserting loxP sequences at the sites flanking exon 6 of Ggcx. By mating these mice with albumin-Cre mice, we generated Ggcx-deficient mice specifically in hepatocytes (Ggcx(Δliver/Δliver) mice). In contrast to conventional Ggcx knockout mice, Ggcx(Δliver/Δliver) mice had very low activity of Ggcx in the liver and survived several weeks after birth. Furthermore, compared with heterozygous mice (Ggcx(+/Δliver) ), Ggcx(Δliver/Δliver) mice had shorter life spans. Ggcx(Δliver/Δliver) mice displayed bleeding diathesis, which was accompanied by decreased activity of coagulation factors II and IX. Ggcx-floxed mice can prove useful in examining Ggcx functions in vivo.


Assuntos
Carbono-Carbono Ligases/deficiência , Transtornos Hemorrágicos/enzimologia , Transtornos Hemorrágicos/patologia , Fígado/enzimologia , Longevidade , Animais , Carbono-Carbono Ligases/metabolismo , Deleção de Genes , Hepatócitos/enzimologia , Hepatócitos/patologia , Integrases/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos
20.
Yakugaku Zasshi ; 133(12): 1337-41, 2013.
Artigo em Japonês | MEDLINE | ID: mdl-24292181

RESUMO

Natural vitamin K is found in two forms: a plant form, phylloquinone (PK) and bacterial forms, menaquinones (MKs). PK is a major form of dietary vitamin K; however, the most prevalent form of vitamin K in animals and humans is menaquinone-4 (MK-4). Despite its high concentrations, the origin of MK-4 is yet to be defined. It is postulated that PK is converted into MK-4 and accumulates in extrahepatic tissues. The molecular mechanisms for these conversion reactions have been unclear. To identify the MK-4 biosynthetic enzyme, we screened the human genome database for prenylation enzyme. We found UbiA prenyltransferase domain containing 1 (UBIAD1), a human homologue of Escherichia coli prenyltransferase menA. The short interfering RNA against the UBIAD1 gene inhibited the conversion of deuterium-labelled vitamin K derivatives into deuterium-labelled-MK-4 (MK-4-d7) in human cells. We confirmed that the UBIAD1 gene encodes an MK-4 biosynthetic enzyme through its expression and conversion of deuterium-labelled vitamin K derivatives into MK-4-d7 in insect cells infected with UBIAD1 baculovirus. UBIAD1 was localized in endoplasmic reticulum. Our results show that UBIAD1 is a human MK-4 biosynthetic enzyme. This identification will permit more effective decisions to be made about vitamin K intake and bone health.


Assuntos
Vitamina K/metabolismo , Animais , Dimetilaliltranstransferase/metabolismo , Humanos , Vitamina K/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...